1,821 research outputs found

    Real-time observation of fluid flows in tissue during stress relaxation using Raman spectroscopy

    Get PDF
    This paper outlines a technique to measure fluid levels in articular cartilage tissue during an unconfined stress relaxation test. A time series of Raman spectrum were recorded during relaxation and the changes in the specific Raman spectral bands assigned to water and protein were monitored to determine the fluid content of the tissue. After 1000 s unconfined compression the fluid content of the tissue is reduced by an average of 3.9% ± 1.7%. The reduction in fluid content during compression varies between samples but does not significantly increase with increasing strain. Further development of this technique will allow mapping of fluid distribution and flows during dynamic testing making it a powerful tool to understand the role of interstitial fluid in the functional performance of cartilage

    Mitochondrial Dna Replacement Versus Nuclear Dna Persistence

    Full text link
    In this paper we consider two populations whose generations are not overlapping and whose size is large. The number of males and females in both populations is constant. Any generation is replaced by a new one and any individual has two parents for what concerns nuclear DNA and a single one (the mother) for what concerns mtDNA. Moreover, at any generation some individuals migrate from the first population to the second. In a finite random time TT, the mtDNA of the second population is completely replaced by the mtDNA of the first. In the same time, the nuclear DNA is not completely replaced and a fraction FF of the ancient nuclear DNA persists. We compute both TT and FF. Since this study shows that complete replacement of mtDNA in a population is compatible with the persistence of a large fraction of nuclear DNA, it may have some relevance for the Out of Africa/Multiregional debate in Paleoanthropology

    A review of recent determinations of the composition and surface pressure of the atmos- phere of mars

    Get PDF
    Recent determinations of composition and surface pressure of Mars atmospher

    Surface-plasmon-enhanced light scattering from microscopic spheres

    Get PDF
    Copyright © 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 83 (2003) and may be found at http://link.aip.org/link/?APPLAB/83/3006/1The enhanced light scattering from microscopic latex spheres placed in the optical field associated with a surface-plasmon resonance is explored. Spheres of 200 nm diameter are placed on an optically thin gold film that supports the surface-plasmon and the scattered intensity is then measured as a function of scattering angle. This is compared to the scattering profiles obtained from spheres placed on a bare glass substrate. In both cases, the experimental data are compared to theory. This system is of interest in the field of optical biosensing

    Tribological evaluation of a novel hybrid for repair of articular cartilage defects

    Get PDF
    The friction and wear properties of silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) hybrid materials that are proposed as cartilage tissue engineering materials were investigated against living articular cartilage. A testing rig was designed to allow testing against fresh bovine cartilage. The friction force and wear were compared for five compositions of the hybrid biomaterial articulating against freshly harvested bovine cartilage in diluted bovine calf serum. Under a non-migrating contact, the friction force increased and hence shear force applied to the opposing articular cartilage also increased, resulting in minor damage to the cartilage surface. This worse case testing scenario was used to discriminate between material formulations and revealed the increase in friction and damaged area was lowest for the hybrid containing the most silica. Further friction and wear tests on one hybrid formulation with an elastic modulus closest to that of cartilage were then conducted in a custom incubator system. This demonstrated that over a five day period the friction force, cell viability and glucosaminoglycan (GAG) release into the lubricant were similar between a cartilage-cartilage interface and the hybrid-cartilage interface, supporting the use of these materials for cartilage repair. These results demonstrate how tribology testing can play a part in the development of new materials for chondral tissue engineering

    A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement

    Get PDF
    Partial joint repair is a surgical procedure where an artificial material is used to replace localised chondral damage. These artificial bearing surfaces must articulate against cartilage, but current materials do not replicate both the biphasic and boundary lubrication mechanisms of cartilage. A research challenge therefore exists to provide a material that mimics both boundary and biphasic lubrication mechanisms of cartilage. In this work a polymeric network of a biomimetic boundary lubricant, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), was incorporated into an ultra-tough double network (DN) biphasic (water phase + polymer phase) gel, to form a PMPC triple network (PMPC TN) hydrogel with boundary and biphasic lubrication capability. The presence of this third network of MPC was confirmed using ATR-FTIR. The PMPC TN hydrogel had a yield stress of 26 MPa, which is an order of magnitude higher than the peak stresses found in the native human knee. A preliminary pin on plate tribology study was performed where both the DN and PMPC TN hydrogels experienced a reduction in friction with increasing sliding speed which is consistent with biphasic lubrication. In the physiological sliding speed range, the PMPC TN hydrogel halved the friction compared to the DN hydrogel indicating the boundary lubricating PMPC network was working. A biocompatible, tough, strong and chondral lubrication imitating PMPC TN hydrogel was synthesised in this work. By complementing the biphasic and boundary lubrication mechanisms of cartilage, PMPC TN hydrogel could reduce the reported incidence of chondral damage opposite partial joint repair implants, and therefore increase the clinical efficacy of partial joint repair. Statement of Significance This paper presents the synthesis, characterisation and preliminary tribological testing of a new biomaterial that aims to recreate the primary chondral lubrication mechanisms: boundary and biphasic lubrication. This work has demonstrated that the introduction of an established zwitterionic, biomimetic boundary lubricant can improve the frictional properties of an ultra-tough hydrogel. This new biomaterial, when used as a partial joint replacement bearing material, may help avoid damage to the opposing chondral surface—which has been reported as an issue for other non-biomimetic partial joint replacement materials. Alongside the synthesis of a novel biomaterial focused on complementing the lubrication mechanisms of cartilage, your readership will gain insights into effective mechanical and tribological testing methods and materials characterisation methods for their own biomaterials

    Zirconia phase transformation in retrieved, wear simulated and artificially aged ceramic femoral heads

    Get PDF
    Zirconia in Zirconia toughened alumina ceramic hip replacements exists in an unstable state and can transform in response to stress giving the material improved fracture toughness. Phase transformation also occurs under hydrothermal conditions such as exist in vivo. To predict the hydrothermal aging that will occur in vivo accelerated aging procedures have been used, but validation of these models requires the study of retrieved hip joints. Here 26 retrievals are analysed to determine the degree of phase transformation in vivo. These were compared with virgin heads, heads that had undergone the accelerated aging process and heads wear tested to 5 million cycles in a hip simulator. Monoclinic content and surface roughness were measured using Raman spectroscopy and white light interferometry respectively. The monoclinic content for retrieved heads was 28.5% ± 7.8, greater than twice that in virgin, aged or wear tested heads and did not have a significant correlation with time, contrary to the predictions of the hydrothermal aging model. The surface roughness for retrieved heads in the unworn area was not significantly different to that in virgin, aged or unworn areas of wear tested heads. However in worn areas of the retrieved heads, the surface roughness was higher than observed in wear simulator testing. These results indicate that current testing methodologies do not fully capture the operational conditions of the material and the real performance of future new materials may not be adequately predicted by current pre-clinical testing methods. This article is protected by copyright. All rights reserve

    CLASS Survey Description: Coronal Line Needles in the SDSS Haystack

    Full text link
    Coronal lines are a powerful, yet poorly understood, tool to identify and characterize Active Galactic Nuclei (AGNs). There have been few large scale surveys of coronal lines in the general galaxy population in the literature so far. Using a novel pre-selection technique with a flux-to-RMS ratio FF, followed by Markov-Chain Monte Carlo (MCMC) fitting, we searched for the full suite of 20 coronal lines in the optical spectra of almost 1 million galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 8. We present a catalog of the emission line parameters for the resulting 258 galaxies with detections. The Coronal Line Activity Spectroscopic Survey (CLASS) includes line properties, host galaxy properties, and selection criteria for all galaxies in which at least one line is detected. This comprehensive study reveals that a significant fraction of coronal line activity is missed in past surveys based on a more limited set of coronal lines; ∼\sim60% of our sample do not display the more widely surveyed [Fe X] λ\lambda6374. In addition, we discover a strong correlation between coronal line and WISE W2 luminosities, suggesting that the mid-infrared flux can be used to predict coronal line fluxes. For each line we also provide a confidence level that the line is present, generated by a novel neural network, trained on fully simulated data. We find that after training the network to detect individual lines using 100,000 simulated spectra, we achieve an overall true positive rate of 75.49% and a false positive rate of only 3.96%.Comment: 27 pages, 16 figures, 4 table

    The effect of lubricant supply and frequency upon the behaviour of EHD films subjected to vibrations

    Get PDF
    Machine elements such as rolling element bearings or gears often experience vibrations due to for example geometrical inaccuracies, shock loading, rotating unbalanced masses, and others. These machine elements rely on a very thin lubricant film to protect the metallic surfaces from direct contact and eventual damage. Rapid variation of load in elastohydrodynamic contacts it is influenced by the so-called squeeze film effect, however, when both entrainment and squeeze are present, the conditions of film formation are more complex. It is expected that the lubricant film thickness is influenced by the amplitude and frequency of the vibrations. At the same time, as it is known that the film thickness is established in the inlet of the contact, it is equally important to evaluate what is the role played by the supply of lubricant to the contact under oscillatory conditions. To date there are not many studies on the effect of the oscillatory motion parameters upon the behaviour of the lubricant film. In this study the focus is on the effect of the frequency of vibrations and the supply of lubricant upon the film thickness
    • …
    corecore